Stabilization of dielectric liquid bridges by electric fields in the absence of gravity

Abstract
The stability of liquid bridges in zero gravity conditions under the influence of an a.c. electric field tangential to the interface is examined in this paper. For the theoretical study, a static analysis was carried out to find the bifurcation surfaces as a function of the three relevant non-dimensional parameters: Λ, the slenderness or ratio of height to diameter of the cylindrical bridge; β0, the ratio of dielectric constants of the two fluids used and Ξ, a non-dimensional quantity proportional to the applied voltage. Stable and unstable regions of Λ−βo−Ξ space were distinguished. Results indicate a strong stabilizing effect for higher values of β0. The experimental study, using silicone and ricinus oil to approximate zero gravity conditions fully confirmed quantitatively the theoretical results.