Multiplication and refractoriness in the cat's retinal-ganglion-cell discharge at low light levels

Abstract
Measurements of the pulse-interval distribution and pulse-number distribution for cat retinal ganglion cells in darkness and light have been carried out by Barlow, Levick, and Yoon. The experimental results for an on-center brisk-sustained cell are in accord with a mathematical model incorporating four features: Poisson quantum fluctuations, additive dark noise, multiplication noise (random multiple neural spikes per absorbed quantum), and refractoriness. The data cannot be properly explained by a model lacking any one of these features. Parameters extracted from the model are in good agreement with physiological values.