Habitat fragmentation, percolation theory and the conservation of a keystone species

Abstract
Symmetry is a complex image property that is exploited by a sufficiently wide range of species to indicate that it is detected using simple visual mechanisms. These mechanisms rely on measurements made close to the axis of symmetry. We investigated the size and shape of this integration region (IR) by measuring human detection of spatially band–pass symmetrical patches embedded in noise. Resistance to disruption of symmetry (in the form of random phase noise) improves with increasing patch size, and then asymptotes when the embedded region fills the IR. The size of the IR is shown to vary in inverse proportion to spatial frequency; i.e. symmetry detection exhibits scale–invariance. The IR is shown to have rigid dimensions, elongated in the direction of the axis of symmetry, with an aspect ratio of ca. 2:1. These results are consistent with a central role for spatial filtering in symmetry detection.