Global Changes in Gene Expression in Sinorhizobium meliloti 1021 under Microoxic and Symbiotic Conditions

Abstract
Sinorhizobium meliloti is an α-proteobacterium that alternates between a free-living phase in bulk soil or in the rhizosphere of plants and a symbiotic phase within the host plant cells, where the bacteria ultimately differentiate into nitrogen-fixing organelle-like cells, called bacteroids. As a step toward understanding the physiology of S. meliloti in its free-living and symbiotic forms and the transition between the two, gene expression profiles were determined under two sets of biological conditions: growth under oxic versus microoxic conditions, and in free-living versus symbiotic state. Data acquisition was based on both macro- and microarrays. Transcriptome profiles highlighted a profound modification of gene expression during bacteroid differentiation, with 16% of genes being altered. The data are consistent with an overall slow down of bacteroid metabolism during adaptation to symbiotic life and acquisition of nitrogen fixation capability. A large number of genes of unknown function, including p...

This publication has 67 references indexed in Scilit: