Sparse Sets, Lowness and Highness

Abstract
We develop the notions of “generalized lowness” for sets in PH (the union of the polynomial-time hierarchy) and of “generalized highness” for arbitrary sets. Also, we develop the notions of “extended lowness” and “extended highness” for arbitrary sets. These notions extend the decomposition of NP into low sets and high sets developed by Schöning [15] and studied by Ko and Schöning [9].\ud \ud We show that either every sparse set in PH is generalized high or no sparse set in PH is generalized high. Further, either every sparse set is extended high or no sparse set is extended high. In both situations, the former case corresponds to the polynomial-time hierarchy having only finitely many levels while the latter case corresponds to the polynomial-time hierarchy extending infinitely many levels.Peer ReviewedPostprint (published version

This publication has 16 references indexed in Scilit: