C/EBPbeta-2 confers EGF-independent growth and disrupts the normal acinar architecture of human mammary epithelial cells

Abstract
The transcription factor, C/EBPbeta, is a key regulator of growth and differentiation in the mammary gland. There are three different protein isoforms of C/EBPbeta. C/EBPbeta-1 and -2 are transactivators, and differ by only 23 N-terminal amino acids present in beta-1 only. C/EBPbeta-3 (LIP) lacks the transactivation domain and represses transcription. Elevated C/EBPbeta-2 expression causes MCF10A normal human mammary epithelial cells to become transformed, undergo an epithelial to mesenchymal transition (EMT), and acquire an invasive phenotype. C/EBPbeta is a downstream transcriptional target of Ras signaling pathways and is required for Ras transformation of some cell types. Ras signaling pathways are activated in mammary epithelial cells by the ErbB receptor tyrosine kinase family. Therefore, we considered whether elevated C/EBPbeta-2 expression would resemble ErbB RTK activation in MCF10A cells.