Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA–PEG–folate conjugate

Abstract
For folate-receptor-targeted anticancer therapy, docetaxel (DTX) nanoparticles (NPs) were produced employing polylactide-co-glycolide-polyethylene glycol-folate (PLGA-PEG-FOL) conjugate. The FOL-conjugated di-block copolymer was synthesized by coupling the PLGA-PEG-NH(2) di-block copolymer with an activated folic acid. It was expected that FOL moieties were exposed on the micellar surface. The conjugates assisted in the formation of DTX NPs with an average size of 200 nm in diameter through an emulsification/solvent diffusion method. The FOL-targeted NPs showed a greater extent of intracellular uptake in FOL-receptor-positive cancer cells (SKOV3) in comparison with the non-targeted NPs, indicating that the FOL-receptor-mediated endocytosis mechanism could have a role in the cellular uptake of NPs. These results suggested that FOL-targeted DTX NPs could be a potentially useful delivery system for FOL-receptor-positive cancer cells.