Genetic Covariance Structure of Incisor Crown Size in Twins

Abstract
Previous studies of tooth size in twins and their families have suggested a high degree of genetic control, although there have been difficulties separating the various genetic and environmental effects. A genetic analysis of variation in crown size of the permanent incisors of South Australian twins was carried out, with structural equation modeling used to determine the relative contributions of genetic and environmental factors. Maximum mesiodistal crown dimensions of maxillary and mandibular permanent incisors were recorded from dental models of 298 pairs of twins, including 149 monozygous (MZ) and 149 dizygous (DZ) pairs. The analysis revealed that: (i) an adequate fit required additive genetic and unique environmental components; (ii) augmenting the model with non-additive genetic variation did not lead to a significant improvement in fit; (iii) there was evidence of shared environmental influences in the upper central incisors of males; (iv) the additive genetic component constituted a general factor loading on all eight teeth, with group factors loading on antimeric pairs of teeth; (v) unique environmental effects were mostly variable-specific; (vi) most factor loadings on antimeric tooth pairs could be constrained to be equal, indicating a symmetry of genetic and environmental influences between left and right sides; and (vii) estimated heritability of the incisor mesiodistal dimensions varied from 0.81 to 0.91.

This publication has 31 references indexed in Scilit: