Human hopping on damped surfaces: strategies for adjusting leg mechanics
Open Access
- 22 August 2003
- journal article
- Published by The Royal Society in Proceedings Of The Royal Society B-Biological Sciences
- Vol. 270 (1525) , 1741-1746
- https://doi.org/10.1098/rspb.2003.2435
Abstract
Fast–moving legged animals bounce along the ground with spring–like legs and agilely traverse variable terrain. Previous research has shown that hopping and running humans maintain the same bouncing movement of the body's centre of mass on a range of elastic surfaces by adjusting their spring–like legs to exactly offset changes in surface stiffness. This study investigated human hopping on damped surfaces that dissipated up to 72% of the hopper's mechanical energy. On these surfaces, the legs did not act like pure springs. Leg muscles performed up to 24–fold more net work to replace the energy lost by the damped surface. However, considering the leg and surface together, the combination appeared to behave like a constant stiffness spring on all damped surfaces. By conserving the mechanics of the leg–surface combination regardless of surface damping, hoppers also conserved centre–of–mass motions. Thus, the normal bouncing movements of the centre of mass in hopping are not always a direct result of spring–like leg behaviour. Conserving the trajectory of the centre of mass by maintaining spring–like mechanics of the leg–surface combination may be an important control strategy for fast–legged locomotion on variable terrain.Keywords
This publication has 22 references indexed in Scilit:
- Running in the real world: adjusting leg stiffness for different surfacesProceedings Of The Royal Society B-Biological Sciences, 1998
- Kinetics: our window into the goals and strategies of the central nervous systemBehavioural Brain Research, 1995
- Similarity in multilegged locomotion: Bouncing like a monopodeJournal of Comparative Physiology A, 1993
- Running on an InclineJournal of Biomechanical Engineering, 1992
- A model of bipedal locomotion on compliant legsPhilosophical Transactions Of The Royal Society B-Biological Sciences, 1992
- The energy cost of walking or running on sandEuropean Journal of Applied Physiology, 1992
- The mechanics of running: How does stiffness couple with speed?Journal of Biomechanics, 1990
- The spring-mass model for running and hoppingJournal of Biomechanics, 1989
- Metabolic Energy Expenditure and Terrain Coefficients for Walking on SnowErgonomics, 1976
- Observations on the control of stepping and hopping movements in manThe Journal of Physiology, 1971