Effect of Water Stress on Photosynthetic Parameters of Soybean (Glycine max) and Velvetleaf (Abutilon theophrasti)

Abstract
Greenhouse experiments were conducted to elucidate the effects of water stress on photosynthetic parameters of soybean [Glycine max(L.) Merr. ‘Hutton′] and velvetleaf (Abutilon theophrastiMedik. # ABUTH). Stomatal conductance of both species responded curvilinearly to reductions in leaf water potential. At leaf water potentials less negative than −2.5 MPa, stomatal conductance, net photosynthetic rate, and transpiration rate were greater in velvetleaf than in soybean. Soybean photosynthetic rate was linearly related to stomatal conductance. Velvetleaf photosynthetic rate increased linearly with stomatal conductances up to 1.5 cm s–1; however, no increase in photosynthetic rate was observed at stomatal conductances greater than 1.5 cm s–1, indicating nonstomatal limitations to photosynthesis. As water stress intensified, stomatal conductance, photosynthetic rate, and transpiration of velvetleaf declined more rapidly than in soybean.