Decreased Intramolecular Turnover of L-Fucose in Membrane Glycoproteins of Rat Liver during Liver Regeneration

Abstract
In plasma membrane glycoproteins of rat liver L-fucose undergoes a rapid intramolecular turnover in that fucose residues are removed from the glycoproteins (Tauber, R., Park, C.S. and Reutter, W. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4026-4029). The present paper demonstrates that the intramolecular turnover of L-fucose is markedly decreased during liver regeneration. Turnover half-lives of L-fucose were measured in regenerating liver by pulse-chase experiments in five plasma membrane glycoproteins (Mr 60 000 (gp60), 80 000 (gp80), 120 000 (gp120), 140 000 (gp140), and 160 000 (gp160)). The glycoproteins were isolated from plasma membranes by concanavalin A-Sepharose affinity chromatography and semipreparative NaDodSO4 polyacrylamide gel electrophoresis. L-Fucose turned over in the five glycoproteins with heterogeneous half-lives ranging from 22 h (gp160) to 49 h (gp120). The protein moieties of the glycoproteins were degraded with half-lives ranging from 56 h (gp80) to 107 h (gp140). Relative to the half-life of the protein backbone the half-live of L-fucose was increased in the five membrane glycoproteins by 70% (gp60), 150% (gp80), 182% (gp120), 60% (gp140) and 16% (gp160) during liver regeneration when compared to normal liver. The data show that L-fucose turns over in different membrane glycoproteins with individual rates, and that loss of L-fucose from plasma membrane glycoproteins is reduced in rapidly proliferating liver after partial hepatectomy.