Calculated and Experimental NMR Chemical Shifts of p-Menthane-3,9-diols. A Combination of Molecular Dynamics and Quantum Mechanics to Determine the Structure and the Solvent Effects

Abstract
NMR chemical shifts have been experimentally measured and theoretically estimated for all the carbon atoms of (1R,3S,4S,8S)-p-menthane-3,9-diol in chloroform solution. Theoretical estimations were performed using a combination of molecular dynamics simulations and quantum mechanical calculations. Molecular dynamics simulations were used to obtain the most populated conformations of the (1R,3S:4S,8S)-p-menthane-3,9-diol as well as the distribution of the solvent molecules around it. Quantum mechanical calculations of NMR chemical shifts were performed on the most relevant conformations employing the GIAO-DFT formalism. A special emphasis was put in evaluating the effects of the surrounding solvent molecules. For this purpose, supermolecule calculations were performed on complexes constituted by the solute and n chloroform molecules, where n ranges from 3 to 16. An excellent agreement with experimental data has been obtained following this computational strategy.

This publication has 38 references indexed in Scilit: