Cortical bitufted, horizontal, and Martinotti cells preferentially express and secrete reelin into perineuronal nets, nonsynaptically modulating gene expression

Abstract
Reelin (Reln) is a protein with some structural analogies with other extracellular matrix proteins that functions in the regulation of neuronal migration during the development of cortical laminated structures. In the cortex of adult animals, Reln is expressed primarily in γ-aminobutyric acid (GABA)ergic neurons and is secreted into perineuronal nets. However, only 50–60% of GABAergic interneurons express Reln. We have characterized this subpopulation of cortical GABAergic neurons that expresses Reln by using two strategies: (i) a double immunolabeling procedure to determine the colocalization of Reln with neuropeptides and Ca2+-binding proteins and (ii) a combination of Golgi staining and Reln immunolabeling to determine the morphology of the rat cortical cells that store Reln. Many interneurons that express Neuropeptide Y (NPY) or somatostatin (but none of those that express parvalbumin) are Reln-immunopositive. A small population of calbindin-positive interneurons and very few calretinin-positive cells express Reln immunopositivity. Golgi staining revealed that layer I horizontal cells, layer II–V bitufted neurons, and some deep cortical layer Martinotti cells express Reln. Basket and chandelier cells are often immunopositive to parvalbumin, but never to Reln. Although Reln is secreted by GABAergic neurons, its target are not the GABA receptors, but rather may be extrasynaptically located in perineuronal nets and concerned with the modulation of neuronal plasticity. Dab1, the target adapter protein that presumably mediates transcription regulation via the extrasynaptic actions of Reln, is expressed predominantly in pyramidal neurons, but it can also be detected in a small population of GABAergic neurons that are neither horizontal nor bitufted neurons.