A Staphylococcal GGDEF Domain Protein Regulates Biofilm Formation Independently of Cyclic Dimeric GMP
- 1 August 2008
- journal article
- research article
- Published by American Society for Microbiology in Journal of Bacteriology
- Vol. 190 (15) , 5178-5189
- https://doi.org/10.1128/jb.00375-08
Abstract
Cyclic dimeric GMP (c-di-GMP) is an important biofilm regulator that allosterically activates enzymes of exopolysaccharide biosynthesis. Proteobacterial genomes usually encode multiple GGDEF domain-containing diguanylate cyclases responsible for c-di-GMP synthesis. In contrast, only one conserved GGDEF domain protein, GdpS (for GGDEF domain protein from Staphylococcus), and a second protein with a highly modified GGDEF domain, GdpP, are present in the sequenced staphylococcal genomes. Here, we investigated the role of GdpS in biofilm formation in Staphylococcus epidermidis. Inactivation of gdpS impaired biofilm formation in medium supplemented with NaCl under static and flow-cell conditions, whereas gdpS overexpression complemented the mutation and enhanced wild-type biofilm development. GdpS increased production of the icaADBC-encoded exopolysaccharide, poly-N-acetyl-glucosamine, by elevating icaADBC mRNA levels. Unexpectedly, c-di-GMP synthesis was found to be irrelevant for the ability of GdpS to elevate icaADBC expression. Mutagenesis of the GGEEF motif essential for diguanylate cyclase activity did not impair GdpS, and the N-terminal fragment of GdpS lacking the GGDEF domain partially complemented the gdpS mutation. Furthermore, heterologous diguanylate cyclases expressed in trans failed to complement the gdpS mutation, and the purified GGDEF domain from GdpS possessed no diguanylate cyclase activity in vitro. The gdpS gene from Staphylococcus aureus exhibited similar characteristics to its S. epidermidis ortholog, suggesting that the GdpS-mediated signal transduction is conserved in staphylococci. Therefore, GdpS affects biofilm formation through a novel c-di-GMP-independent mechanism involving increased icaADBC mRNA levels and exopolysaccharide biosynthesis. Our data raise the possibility that staphylococci cannot synthesize c-di-GMP and have only remnants of a c-di-GMP signaling pathway.Keywords
This publication has 54 references indexed in Scilit:
- Roles of Cyclic Diguanylate in the Regulation of Bacterial PathogenesisAnnual Review of Microbiology, 2007
- A cyclic‐di‐GMP receptor required for bacterial exopolysaccharide productionMolecular Microbiology, 2007
- PilZ Domain Proteins Bind Cyclic Diguanylate and Regulate Diverse Processes in Vibrio choleraeJournal of Biological Chemistry, 2007
- DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentusProceedings of the National Academy of Sciences, 2007
- Isolation and Characterization of Biofilm Formation-Defective Mutants of Staphylococcus aureusInfection and Immunity, 2007
- Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase EGenes & Development, 2006
- Spx Is a Global Effector Impacting Stress Tolerance and Biofilm Formation inStaphylococcus aureusJournal of Bacteriology, 2006
- RETRACTED: Cell–cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnoverProceedings of the National Academy of Sciences, 2006
- Pfam: clans, web tools and servicesNucleic Acids Research, 2006
- The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophageNature, 1983