Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into human polymorphonuclear leukocytes
- 1 October 1987
- journal article
- research article
- Published by American Society for Microbiology in Antimicrobial Agents and Chemotherapy
- Vol. 31 (10) , 1553-1557
- https://doi.org/10.1128/aac.31.10.1553
Abstract
Entry of antibiotics into phagocytes is necessary for activity against intracellular organisms. Therefore, we examined the uptake of five of the newer antibiotics--roxithromycin (RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole--by human polymorphonuclear leukocytes (PMN). Antibiotic uptake by PMN was determined by a velocity gradient centrifugation technique and expressed as the ratio of the cellular concentration of antibiotic to the extracellular concentration (C/E). Cefotaxime, like other beta-lactam antibiotics, was taken up poorly by phagocytes (C/E less than or equal to 0.3). The metronidazole concentration within PMN was similar to the extracellular level. Imipenem bound rapidly to phagocytes (C/E = 3), but cell-associated drug progressively declined during the incubation period. Trimethoprim was well concentrated by PMN (C/E = 9 to 13), and uptake was unexpectedly greater at 25 degrees C than at 37 degrees C. The most striking finding was that roxithromycin was more avidly concentrated by PMN (C/E = 34) than any other antibiotic we studied. Entry of roxithromycin into phagocytes was an active process and displayed saturation kinetics characteristic of a carrier-mediated membrane transport system. Ingestion of microbial particles by PMN slightly decreased the ability of these cells to accumulate roxithromycin (C/E = 24 to 31). These studies identified two antibiotics, trimethoprim and especially roxithromycin, which are markedly concentrated within human PMN and may prove useful in treatment of infections caused by susceptible intracellular organisms.This publication has 12 references indexed in Scilit:
- Antimicrobial activity of U-70138F (paldimycin), roxithromycin (RU 965), and ofloxacin (ORF 18489) against Chlamydia trachomatis in cell cultureAntimicrobial Agents and Chemotherapy, 1986
- Activity of roxithromycin (RU 28965), a macrolide, against Toxoplasma gondii infection in miceAntimicrobial Agents and Chemotherapy, 1986
- Contrasts between phagocyte antibiotic uptake and subsequent intracellular bactericidal activityAntimicrobial Agents and Chemotherapy, 1986
- In vitro comparison of the activity of RU 28965, a new macrolide, with that of erythromycin against aerobic and anaerobic bacteriaAntimicrobial Agents and Chemotherapy, 1984
- Effects of Phagocytosis on Antibiotic and Nucleoside Uptake by Human Polymorphonuclear LeukocytesThe Journal of Infectious Diseases, 1984
- Antibiotic entry into human polymorphonuclear leukocytesAntimicrobial Agents and Chemotherapy, 1982
- Membrane transport of clindamycin in alveolar macrophagesAntimicrobial Agents and Chemotherapy, 1982
- Phagocytosis of MicroorganismsClinical Infectious Diseases, 1982
- ANTIBIOTIC UPTAKE BY ALVEOLAR MACROPHAGES1980
- Dynamics of the Macrophage Plasma MembranceAnnual Review of Microbiology, 1979