Ultrafast Coherent Generation of Hot Electrons Studied via Band-to-Acceptor Luminescence in GaAs

Abstract
The distribution of hot electrons excited with femtosecond laser pulses is studied via spectrally resolved band-to-acceptor luminescence. Our data demonstrate for the first time that the coherent coupling between the laser pulse and the interband polarization strongly influences the initial carrier distribution. The energetic width of carrier generation is broadened due to rapid phase-breaking scattering events. Theoretical results from a Monte Carlo solution of the semiconductor Bloch equations including on the same kinetic level coherent and incoherent phenomena, are in excellent agreement with the experimental data.