Quantum Phase Transitions in Coupled Dimer Compounds

Abstract
We study the critical properties in cubic systems of antiferromagnetically coupled spin dimers near magnetic-field induced quantum phase transitions. The quantum critical points in the zero-temperature phase diagrams are determined from quantum Monte Carlo simulations. Furthermore, scaling properties of the uniform magnetization and the staggered transverse magnetization across the quantum phase transition in magnetic fields are calculated. The critical exponents are derived from Ginzburg-Landau theory. We find excellent agreement between the quantum Monte Carlo simulations and the analytical results.

This publication has 0 references indexed in Scilit: