Morphology of astroglial cells is controlled by beta-adrenergic receptors.
Open Access
- 1 November 1987
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 105 (5) , 2307-2314
- https://doi.org/10.1083/jcb.105.5.2307
Abstract
Astroglial cells in vivo and in vitro respond to hormones, growth factors, and neurotransmitters by changing from an epithelial-like to stellate morphology. We have studied the temporal relationship between receptor activation, second messenger mobilization, and morphological changes using LRM55 astroglial cells. Maintenance of an altered morphology required continuous beta-adrenergic receptor activation. These changes appeared to be mediated by cAMP since they were elicited by its analogue, dibutyryl cAMP, and by forskolin, a direct activator of adenylate cyclase. Changes in cell morphology may require a relatively small increase in intracellular cAMP, since receptor-stimulated changes in cAMP levels were transient and peaked approximately 5 min after receptor activation while changes in morphology took at least 30 min to reach a new steady state. Time-lapse videomicroscopy and high voltage electron microscopy indicated that receptor activation resulted in a sequence of morphological events. Time-lapse observations revealed the development and enlargement of openings through the cytoplasm associated with cytoplasmic withdrawal to the perinuclear region and process formation. Higher resolution high voltage electron microscopy indicated that the transition to a stellate morphology was preceded by the appearance of two distinct cytoplasmic domains. One contained an open network of filaments and organelles. The other was characterized by short broad cytoplasmic filaments. The first domain was similar to cytoplasm in control cells while the second was associated with the development and enlargement of openings through the cytoplasm and regions of obvious cytoplasmic withdrawal.This publication has 35 references indexed in Scilit:
- Activation of β‐Adrenergic Receptors Stimulates Release of an Inhibitory Transmitter from AstrocytesJournal of Neurochemistry, 1986
- The structure of cytoplasm in directly frozen cultured cells. II. Cytoplasmic domains associated with organelle movements.The Journal of cell biology, 1986
- Microtubule-associated proteins and in vitro astrocyte differentiation.The Journal of cell biology, 1985
- Receptor‐Mediated Phosphorylation of Astroglial Intermediate Filament Proteins in Cultured AstrogliaJournal of Neurochemistry, 1985
- The cytomatrix: a short history of its study.The Journal of cell biology, 1984
- Glial Fibrillary Acidic Protein: Norepinephrine Stimulated Phosphorylation in Intact C-6 Glioma CellsJournal of Neurochemistry, 1984
- Astrocyte cell lineage. V. Similarity of astrocytes that form in the presence of dBcAMP in cultures to reactive astrocytes in vivoJournal of Neuroscience Research, 1984
- Effect of prostaglandins and dibutyryl cyclic AMP on the morphology of cells in primary astroglial cultures and on metabolic enzymes of GABA and glutamate metabolismCellular and Molecular Life Sciences, 1981
- A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye BindingAnalytical Biochemistry, 1976
- Mediation by cyclic AMP of hormone-stimulated glycogenolysis in cultured rat astrocytoma cellsBiochemical and Biophysical Research Communications, 1972