Abstract
The phase structure of four-fermion theories is thoroughly investigated with varying temperature and chemical potential for arbitrary space-time dimensions (2≤D<4) by using the 1/N expansion method. It is shown that the chiral symmetry is restored in the theory under consideration for sufficiently high temperature and/or chemical potential. The critical line dividing the symmetric and the broken phase is given explicitly. It is found that for space-time dimension 2≤D<3 both the first order and the second order phase transition occur depending on the value of the temperature and chemical potential while for 3≤D<4 only the second order phase transition exists.

This publication has 0 references indexed in Scilit: