Fabrication and Secondary‐Phase Crystallization of Rare‐Earth Disilicate–Silicon Nitride Ceramics

Abstract
The fabrication and intergranular‐phase devitrification of silicon nitride densified with rare‐earth (RE) oxide additives has been investigated. The additions of the oxides of Sm, Gd, Dy, Er, and Yb, having high melting points and behaving similarly to Y2O3, were compositionally controlled to tailor a microstructure with a crystalline secondary phase of RE2Si2O7. The lanthanide oxides were found to be as effective as Y2O3 in densifying Si3N4, resulting in identical microstructures and densities of 98–99% of theoretical density. The crystallization behavior of all six disilicates was similar, characterized by a limited nucleation and rapid growth mechanism resulting in large single crystals. Complete crystallization of the intergranular phase was obtained with the exception of a thin residual amorphous film which was observed at interfaces and believed to be rich in impurities, the cause of incomplete devitrification.