Influence of vascular and luminal hexoses on rat intestinal basolateral glucose transport

Abstract
The influence of luminal and vascular hexoses in rats on glucose transport across the jejunal basolateral membrane (BLM) was measured using isolated membrane vesicles prepared from infused animals. In vivo vascular infusions of glucose produced an increase in glucose transport across BLM vesicles. Sucrose, mannose, galactose, and fructose had no significant effect. Plasma glucose concentrations were unaffected by galactose and sucrose vascular infusions, while mannose and fructose produced a modest rise, and glucose increased plasma glucose to 20 mM. Insulin release was significantly increased by vascular infusion of glucose and fructose, while mannose produced only a small sustained rise. Sucrose and galactose had no effect. Perfusion through the lumen of the rat jejunum in vivo, for up to 4 h, with glucose, fructose, sucrose, or lactate (100 or 25 mM) produced a significant increase in the maximal rate of glucose transport (up to 4- to 5-fold) across BLMs. Galactose and mannose had no effect. Luminal glucose perfusion produced a small nonsignificant increase in glucose inhibitable cytochalasin B binding to BLM vesicles, and no change was seen in the microsomal pool of binding sites. The abundance of GLUT2 in the jejunal BLM, as determined by Western blotting, was unaffected by luminal perfusion of 100 mM glucose for 4 h. Fructose almost completely inhibited the carrier-mediated uptake of glucose in control and upregulated jejunal BLM vesicles. These results are discussed in relation to the physiological role of the upregulation of GLUT2 activity by luminal and vascular hexoses.Key words: intestinal transport, basolateral membrane, glucose transport, intestinal adaptation.

This publication has 0 references indexed in Scilit: