Chaos and Noise in Galactic Potentials

Abstract
ABBREVIATED ABSTRACT: This paper summarises an investigation of the effects of weak friction and noise in time-independent, nonintegrable potentials which admit both regular and stochastic orbits. The aim is to understand the qualitative effects of internal and external irregularities associated, e.g., with discreteness effects or couplings to an external environment, which stars in any real galaxy must experience. The two principal conclusions are: (1) These irregularities can be important on time scales much shorter than the natural relaxation time scale t_R associated with the friction and noise. For stochastic orbits friction and noise induce an average exponential divergence from the unperturbed Hamiltonian trajectory at a rate set by the value of the local Lyapunov exponent. Even weak noise can make a pointwise interpretation of orbits suspect already on time scales much shorter than t_R. (2) The friction and noise can also have significant effects on the statistical properties of ensembles of stochastic orbits, these also occurring on time scales much shorter than t_R. Potential implications for galactic dynamics are discussed, including the problem of shadowing.

This publication has 0 references indexed in Scilit: