Robust Photonic Band Gap from Tunable Scatterers

Abstract
We show theoretically and experimentally that photonic band gaps can be realized using metal or metal-coated spheres as building blocks. Robust photonic gaps exist in any periodic structure built from such spheres when the filling ratio of the spheres exceeds a threshold. The frequency and the size of the gaps depend on the local order rather than on the symmetry or the global long range order. Good agreement between theory and experiment is obtained in the microwave regime. Calculations show that the approach can be scaled up to optical frequencies even in the presence of absorption.