Abstract
In this article, comprehensive comparisons are made between the SIMPLER and IDEAL algorithms for four application examples. It is found that the IDEAL algorithm is efficient and stable not only for the simple, low-Re/Ra or coarse-mesh flow cases, but also for the complex, high-Re/Ra or fine-mesh flow cases. For the low-Re/Ra, coarse-mesh flow cases, the ratio of CPU time of IDEAL to that of SIMPLER ranges from 0.029 to 0.7. For the high-Re/Ra, fine-mesh flow cases, the IDEAL algorithm can obtain convergent results but the SIMPLER algorithm cannot, even though the underrelaxation factors are adjusted.