The modeling of nucleophilic and electrophilic additions and substitutions using extended Hückel‐based reaction potentials
- 1 November 1990
- journal article
- research article
- Published by Wiley in International Journal of Quantum Chemistry
- Vol. 38 (5) , 623-640
- https://doi.org/10.1002/qua.560380505
Abstract
A new formalism has been developed in order to evaluate intermolecular interaction energies for organometallic complexes including electrostatic, polarization, and orbital contributions based on extended Hückel molecular orbital (EHMO) theory. The electrostatic interaction is evaluated using (i) a multipolar expansion of EHMO charge density, or (ii) by calculating directly the electrostatic integrals in the basis of atomic orbitals. The polarization effects are evaluated by introducing a perturbation into the Hamiltonian. The orbital interaction is calculated by considering a supermolecule made of the organometallic substrate and a model electrophile or nucleophile. To provide the shortest possible response time on an interactive computer graphics facility, this model should require the minimum amount of computer time, which explains why approximate procedures are used to evaluate the dominant contributions to the interaction energies. Preliminary results show that these interaction energies lead to reaction potentials in good agreement with experiment for a broad series of nucleophilic and electrophilic addition or substitution reactions involving organometallic complexes. In addition, it is shown that the method can easily be extended for the calculation of solvent effects. To this end, developments considering the supermolecule surrounded by a polarizable continuum are in progress.Keywords
This publication has 34 references indexed in Scilit:
- Kinetics and thermodynamics of protonation of ferrocene in the gas phaseThe Journal of Physical Chemistry, 1988
- Theoretical analysis of the addition of nucleophiles to (.eta.4-diene)MLn complexesOrganometallics, 1987
- Computer‐Assisted Molecular Design (CAMD)—An OverviewAngewandte Chemie International Edition in English, 1987
- Chemical ideograms and molecular computer graphicsThe Visual Computer, 1985
- Scope of anion addition to (.eta.4-1,3-cyclohexadiene)tricarbonyliron(0)Organometallics, 1983
- Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinityAccounts of Chemical Research, 1977
- Ion-molecule reactions and gas-phase basicity of ferroceneJournal of the American Chemical Society, 1975
- Electrostatic molecular potentials: Mulliken approximationInternational Journal of Quantum Chemistry, 1975
- Roothaan-Hartree-Fock atomic wavefunctionsAtomic Data and Nuclear Data Tables, 1974
- PROTONATION OF METALLOCENES BY STRONG ACIDS. STRUCTURE OF THE CATIONJournal of the American Chemical Society, 1960