The second‐generation polysulfone gas‐separation membrane. II. The relationship between sol properties, gel macrovoids, and fiber selectivity
- 5 November 1990
- journal article
- research article
- Published by Wiley in Journal of Applied Polymer Science
- Vol. 40 (9-10) , 1575-1582
- https://doi.org/10.1002/app.1990.070400914
Abstract
All integrally skinned asymmetric membranes contain some defects which are attributable to the incomplete coalescence of the nodule aggregates of which the skin layer is composed. When such defects are small in size and few in number, they can be effectively sealed by coating with a highly permeable polymer. The resulting composite then exhibits the selectivity to gas permeation which is characteristic of the base polymer. Prior to their sealing, therefore, such membranes can be said to exhibit the potential for intrinsic selectivity. However, not all gas separation membranes can be effectively sealed. In the present study the relationship between sol properties, the presence of macrovoids in the substructure of the gel, and the subsequent failure of the fibers to achieve the potential for intrinsic selectivity are considered. Macrovoid‐free fibers with the potential for intrinsic selectivity can be prepared by the utilization of high viscosity, high total solids sols with low nonsolvent tolerance whose solvent vehicles consist of appropriate Lewis acid: base complexes.Keywords
This publication has 5 references indexed in Scilit:
- The second‐generation polysulfone gas‐separation membrane. I. The use of lewis acid: Base complexes as transient templates to increase free volumeJournal of Applied Polymer Science, 1990
- Kenya in US geo-politicsRace & Class, 1983
- Composite hollow fiber membranes for gas separation: the resistance model approachJournal of Membrane Science, 1981
- Trennung von Molekularen Mischungen mit Hilfe Synthetischer MembranenPublished by Springer Nature ,1979
- Cellulose Acetate Blend MembranesPublished by Springer Nature ,1972