Abstract
The steroid hormone 20-hydroxyecdysone regulates many aspects of nervous system development in the moth Manduca sexta, including stage-specific neuronal morphology and stage-specific neuronal death. We have used steroid hormone autoradiography to study the distribution of cells that cocentrate ecdysteroids in the ventral nervous system of this insect. The ligand was [3H]-ponasterone A, a bioactive phytoecdysone. Tissue was examined from three stages of development: the end of larval life (first day of wandering), the end of metamorphosis (pharate adult), and 4-day-old adults. In the abdominal ganglia of wandering larvae and pharate adults, a subset of neurons including both motoneurons and interneurons exhibited a nuclear concentration of radiolabeled hormone. The pattern of binding was reproducible but stage-specific, with a greater proportion of neurons showing binding in the larvae than in pharate adults. No labeled neurons were found in abdominal ganglia from mature (4-day-old) adults. In the case of the pharate adult ganglia, the ecdysteroid receptor content of specific, identified motoneurons was determined. These results are discussed in light of the responses of these neurons to physiological changes in levels of circulating ecdysteroids.