Description of Impurity Ionization in Semiconductors by Chemical Thermodynamics
- 1 September 1961
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 123 (5) , 1666-1673
- https://doi.org/10.1103/PhysRev.123.1666
Abstract
The phenomenon of impurity ionization is considered on the basis of exact thermodynamics, involving an extension of the usual mass-action formulism. To make possible the evaluation of quantities of interest in the two-band model of covalent semiconductors, comparison is made with the statistical formulation of ionization equilibrium. Particular consideration is given to the concentration dependence of the impurity ionization energy. Interactions between ionized impurities and mobile carriers are treated by the Debye-Hückel theory of strong electrolytes; the treatment involves only one parameter which must be determined from experimental carrier densities. Very good agreement is found for arsenic-doped germanium using the detailed data and analysis of Debye and Conwell.Keywords
This publication has 15 references indexed in Scilit:
- Activity Coefficients of Electrons and Holes at High ConcentrationsThe Journal of Chemical Physics, 1960
- Influence of trapping, diffusion and recombination on carrier concentration fluctuationsJournal of Physics and Chemistry of Solids, 1960
- Refined Theory of Ion Pairing. I. Equilibrium AspectsThe Journal of Chemical Physics, 1956
- Interaction of Impurities and Mobile Carriers in SemiconductorsPhysical Review B, 1955
- Ionization Energies of Groups III and V Elements in GermaniumPhysical Review B, 1954
- Electrical Properties of-Type GermaniumPhysical Review B, 1954
- Chemical Effects Due to the Ionization of Impurities in SemiconductorsThe Journal of Chemical Physics, 1953
- Change of Activation Energy with Impurity Concentration in SemiconductorsProceedings of the Physical Society. Section A, 1951
- Electrical Properties of Pure Silicon and Silicon Alloys Containing Boron and PhosphorusPhysical Review B, 1949
- The computation of Fermi-Dirac functionsPhilosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1938