Perturbations of Schwarzschild black holes in the Lorenz gauge: Formulation and numerical implementation

Abstract
We reformulate the theory of Schwarzschild black hole perturbations in terms of the metric perturbation in the Lorenz gauge. In this formulation, each tensor-harmonic mode of the perturbation is constructed algebraically from ten scalar functions, satisfying a set of ten wavelike equations, which are decoupled at their principal parts. We solve these equations using numerical evolution in the time domain, for the case of a pointlike test particle set in a circular geodesic orbit around the black hole. Our code uses characteristic coordinates, and incorporates a constraint-damping scheme. The axially symmetric, odd-parity modes of the perturbation are obtained analytically. The approach developed here is especially advantageous in applications requiring knowledge of the local metric perturbation near a point particle; in particular, it offers a useful framework for calculations of the gravitational self-force.