Bayesian State Estimation Method for Nonlinear Systems and Its Application to Recorded Seismic Response

Abstract
The focus of this paper is to demonstrate the application of a recently developed Bayesian state estimation method to the recorded seismic response of a building and to discuss the issue of model selection. The method, known as the particle filter, is based on stochastic simulation. Unlike the well-known extended Kalman filter, it is applicable to highly nonlinear systems with non-Gaussian uncertainties. The particle filter is applied to strong motion data recorded in the 1994 Northridge earthquake in a seven-story hotel whose structural system consists of nonductile reinforced-concrete moment frames, two of which were severely damaged during the earthquake. We address the issue of model selection. Two identification models are proposed: a time-varying linear model and a simplified time-varying nonlinear degradation model. The latter is derived from a nonlinear finite-element model of the building previously developed at Caltech. For the former model, the resulting performance is poor since the parameters...

This publication has 20 references indexed in Scilit: