Exponential growth of a branching process usually implies stable age distribution

Abstract
Start a Bellman–Harris branching process from one or several ancestors, whose ages are identically distributed random variables. Assume that the life-length distribution decays more quickly than exponentially and that the distribution of ages at start does not give too much mass to high ages (in a sense to be made precise). Then, if the expected population size is an exponential function of time, the ages must follow the stable age distribution of the process.

This publication has 0 references indexed in Scilit: