We have studied the relative contribution of inversions, transpositions, deletions, and nucleotide substitutions to the evolution of Chlamydia trachomatis and Chlamydia pneumoniae. The minimal number of rearrangement events required for converting the gene order structure of one genome into that of the other was estimated to 59 +/- 6 events, including 13% inversions, 38% short inversions, and 49% transpositions. In contrast to previous findings, no examples of horizontal gene transfer subsequent to species divergence were identified, nor any evidence for an excessive number of tandem gene duplications. A statistical model was used to compare nucleotide frequencies for a set of genes uniquely present in one species to a set of orthologous genes present in both species. The two data sets were not significantly different, which is indicative of a low frequency of horizontal gene transfer events. This is based on the assumption that a foreign gene of different nucleotide content will not have become completely ameliorated, as verified by simulations of the amelioration rate at twofold and fourfold degenerate codon sites. The frequencies of nucleotide substitutions at twofold and fourfold degenerate sites, deletions, inversions, and translocations were estimated to 1.42, 0.62, 0.18, 0.01, and 0.01 per site, respectively.