Abstract
We study numerically how the intercellular conductance affects the process of spiral breakup in an array of coupled excitable cells. The cell dynamics are described by the Aliev-Panfilov model, and the intercellular connection is made via Ohmic elements. We find that decreasing intercellular conductance can prevent the breaking up of a spiral wave into a complex spatiotemporal pattern. We study the mechanism of this effect and show that the breakup disappears because of increasing the diastolic interval of an initial spiral wave.