Post-contraction changes in human muscle spindle resting discharge and stretch sensitivity

Abstract
The activities of human muscle spindle primary endings were recorded in the lateral peroneal nerve using the microneurographic method. The aim of the study was to test whether voluntary isometric contraction causes any after-effects, first in the resting discharge of muscle spindle primary endings and secondly in their responses to a slow ramp stretch. To investigate the latter point, the initial angular position of the ankle was passively adjusted until the unit fell silent, in order to introduce a delay in the responses to muscle stretch. The results were as follows: (1) most of the units did not exhibit the “post-contraction sensory discharge” reported to occur in numerous animal experiments; this means that the muscle spindle resting discharge was essentially the same before and after isometric voluntary contraction. (2) Isometric voluntary contraction led to changes in muscle spindle stretch sensitivity which resulted in a reduction in the stretch threshold and a decrease in the muscle spindle dynamic sensitivity. These data suggest that the after-effects observed may have been triggered by static fusimotor neurones. The results are discussed with reference to the theory according to which the processing by the CNS of muscular proprioceptive messages deals mainly with signals arising from muscles stretched during movement, and it is concluded that the coactivation of α and y motoneurones during the contraction facilitates the coding of the parameters of forthcoming stretching movements, by the muscle spindles.