pros‐Methylimidazoleacetic Acid in Rat Brain: Its Regional Distribution and Relationship to Metabolic Pathways of Histamine

Abstract
Pros-Methylimidazoleacetic acid (p-MIAA; 1-methylimidazole-5-acetic acid), an isomer of the histamine metabolite, tele-methylimidazoleacetic acid (t-MIAA), is present in brain and CSF. Its relationship to histamine synthesis and catabolism was assessed in brains of rats. p-MIAA distribution in brain regions was heterogeneous although the concentrations in regions with the highest (hypothalamus) and the lowest (medulla-pons) levels differed less than fourfold. There was no significant correlation between the regional distributions of p-MIAA with those of histamine or its metabolites. pros-Methylhistidine (1 g/kg/, i.p.) produced a 20-fold increase in mean levels of p-MIAA and up to a 50-fold increase in levels of pros-methylhistamine (p-MH), a putative intermediate; levels of histamine and its metabolites were unaltered. L-Histidine (1 g/kg., i.p.) or .alpha.-fluoromethylhistidine (100 mg/kg, i.p.), the irreversible inhibitor of histamine synthesis, did not alter the levels of p-MIAA in brain. Like the levels of t-MIAA, the levels of p-MIAA were unaltered after probenecid administration. Contrary to its effects in lowering t-MIAA levels, pargyline (75 mg/kg, i.p.) produced a slight rise in levels of p-MIAA in all regions. These findings suggest that, in brain, the metabolic pathways of histamine are independent of pathways that generate p-MIAA. Further, since brain is capable of p-MH formation, its use as an internal standard in analytical methods merits caution.