Characterization of Truncated and Glycosylation-Deficient Forms of the Cation-Dependent Mannose 6-Phosphate Receptor Expressed in Baculovirus-Infected Insect Cells

Abstract
A soluble truncated form of the cation-dependent mannose 6-phosphate receptor (CD-MPR) encoding only the extracytoplasmic region, Stop155, and a truncated glycosylation-deficient form of the CD-MPR, Asn81/Stop155, which has been modified to contain only one N-linked glycosylation site at position 81 instead of five, were purified from baculovirus-infected High Five insect cells. The glycosylated recombinant proteins were functional in ligand binding and acid-dependent dissociation as assessed by pentamannosyl phosphate-agarose affinity chromatography. Gel filtration, sucrose gradients, and cross-linking experiments revealed that both Stop155 and Asn81/Stop155 are dimeric, demonstrating that the transmembrane and cytoplasmic region of the receptor as well as N-linked oligosaccharides at positions 31, 57, and 87 are not required for dimerization. The Kd of Stop155 and Asn81/Stop155 for the lysosomal enzyme, β-glucuronidase, was 0.2 and 0.3 nM, respectively. These values are very similar to those reported for the full-length CD-MPR, demonstrating that the extracellular region of the CD-MPR is sufficient for high-affinity binding and that oligosaccharides at positions 31, 57, and 87 do not influence ligand binding.