Flow structure in the frequency-modulated wake of a cylinder

Abstract
A cylinder is subjected to frequency-modulated (FM) excitation and the structure of its wake is characterized in terms of the modulation frequency and the frequency deviation. It is possible to destabilize or restabilize the degree of organization of the vortical structures in the near wake and thereby substantially manipulate the spectral content, relative to the case of purely sinusoidal excitation. These processes of destabilization and restabilization are attainable by varying the frequency deviation while holding the modulation frequency constant or vice versa. A phase-locked periodicity of the nearwake response is attainable at the period of the modulation frequency, as well as at double its period. This phase-locked periodicity, or lack of it, is related to the degree of organization of the wake. The structure of the far wake is strongly dependent upon the nature of the near wake modification. Either coherent or destabilized wake structure can be induced in the far wake, at a given value of nominal excitation frequency, by employing appropriate FM excitation.