Lie symmetries of a generalised non-linear Schrodinger equation. III. Reductions to third-order ordinary differential equations
- 7 March 1989
- journal article
- Published by IOP Publishing in Journal of Physics A: General Physics
- Vol. 22 (5) , 499-509
- https://doi.org/10.1088/0305-4470/22/5/014
Abstract
For pt. II see ibid., vol. 22, p.469 (1989). The study of group invariant solutions of the generalised non-linear Schrodinger equation (GNLSE) is continued. It is shown that eight types of subgroups of the symmetry group lead via symmetry reduction, to third-order real ordinary differential equations, giving both the phase and the absolute value of the solution. Only two of the reductions provide to a Painleve type equation and both of them only for the cubic GNLSE. This equation is solved in terms of the fourth Painleve transcendent.Keywords
This publication has 13 references indexed in Scilit:
- Lie symmetries of a generalised non-linear Schrodinger equation. II. Exact solutionsJournal of Physics A: General Physics, 1989
- Exact solutions of the cubic and quintic nonlinear Schrödinger equation for a cylindrical geometryPhysical Review A, 1989
- Lie symmetries of a generalised nonlinear Schrodinger equation: I. The symmetry group and its subgroupsJournal of Physics A: General Physics, 1988
- Comment on 'Painleve test and integrability of nonlinear Klein-Fock-Gordon equations'Journal of Physics A: General Physics, 1987
- The Painlevé property for partial differential equationsJournal of Mathematical Physics, 1983
- A connection between nonlinear evolution equations and ordinary differential equations of P-type. IJournal of Mathematical Physics, 1980
- Differential equations with fixed critical pointsAnnali di Matematica Pura ed Applicata (1923 -), 1964
- Differential equations with fixed critical pointsAnnali di Matematica Pura ed Applicata (1923 -), 1964
- Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixesActa Mathematica, 1910
- Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniformeActa Mathematica, 1902