Radiological Sampling and Analytical Methods for National Primary Drinking Water Regulations

Abstract
Radiological sampling and analysis performed under the National Interim Primary Drinking Water Regulations were evaluated for the U.S. Environmental Protection Agency (EPA) Office of Drinking Water to consider whether any changes should be recommended. The authors reviewed the analytical screening scheme; sample collection, storage and analysis procedures; selection of analytical methods; reliability of results; and possible future needs. The main problem in the program has been dependence on a screening scheme of gross alpha-particle activity measurement and 226Ra analysis for predicting elevated 228Ra levels to determine compliance with the maximum contaminant level (MCL) for Ra. In some aquifers, 228Ra levels have been found to be unrelated to 226Ra levels. Several alternatives are discussed to eliminate this problem. A secondary problem is that the measurement for assuring compliance with the MCL for gross alpha-particle activity minus Ra, Rn and U uses chemical U analysis and assumes equilibrium of 238U and 234U. Because some ground waters are known to be at disequilibrium, radiometric U analysis is needed for those gross alpha-particle activities and chemical U values that could result in an erroneous conclusion relative to the MCL. In addition, studies were recommended for determining analytical uncertainties and assuring reliable sampling and sample maintenance; improvements in the system for accepting methods were suggested; and methods were identified for several radionuclides not currently in the analytical program that may be needed to assure absence of elevated radiation doses and could be useful for identifying trace contaminants.

This publication has 0 references indexed in Scilit: