Mechanism of acquisition of exogenous bicarbonate by internodal cells of Chara corallina
- 1 November 1982
- journal article
- research article
- Published by Springer Nature in Planta
- Vol. 156 (2) , 181-192
- https://doi.org/10.1007/bf00395434
Abstract
Electrophysiological measurements on internodal cells of the alga, Chara corallina Klein ex Willd., em. R.D.W., showed that the potential across the plasmalemma was sensitive to the level of exogenous HCO 3 - . In alkaline solutions (pH 8) the membrane potential depolarized by 50–75 mV when exogenous HCO 3 - was removed from the bathing medium. In the presence of exogenous HCO 3 - , the membrane potential rapidly hyperpolarized when the cell was given a brief dark treatment; in the light the potential was approx.-240 mV; after the cell had been in the dark for 3–6 min the potential was -330 to -350 mV. In the absence of exogenous HCO 3 - the potential only hyperpolarized slowly and to a much smaller extent when cells were placed in the dark. Upon re-illuminating the cell, the potential further hyperpolarized, transiently, and then rapidly depolarized back towards the light-adapted value. (These responses were only obtained when cells were not perturbed by microelectrode insertion into the vacuole.) Analysis of membrane potential and experiments with the extracellular vibrating electrode indicated a high level of correlation between the light- and dark-induced changes in membrane potential and extracellular currents. However, when experiments were conducted in HCO 3 - -free media that contained 1.0 mM phosphate buffer, pH 8, it was found that the dark-induced hyperpolarization of the membrane potential and the light-dependent extracellular currents could be maintained in the absence of exogenous HCO 3 - . These results are interpreted in terms of two basic models by which internodal cells of C. corallina may acquire exogenous HCO 3 - for photosynthesis. They are consistent with HCO 3 - being transported across the plasmalemma via an electrically neutral HCO 3 - −H+ cotransport system. The hyperpolarizing response is thought to be the consequence of the operation of an electrogenic H+-translocating ATPase that has a transport stoichiometry of 1 H+ per ATP hydrolyzed.Keywords
This publication has 22 references indexed in Scilit:
- Bicarbonate assimilation by fresh-water charophytes and higher plants: I. Membrane transport of bicarbonate ions is not provenThe Journal of Membrane Biology, 1980
- Plasmalemma Transport of OH−inChara corallinaJournal of Experimental Botany, 1979
- Circulating Electric Currents Between Acid and Alkaline Zones Associated with HCO - 3 Assimilation inCharaJournal of Experimental Botany, 1977
- The Influence of Ca2+and K+on H14CO3−Influx in Internodal Cells of Chara corallinaJournal of Experimental Botany, 1976
- Plasmalemma Transport of HCO3−and OH−inChara corallina: Non-antiporter SystemsJournal of Experimental Botany, 1976
- The Influence of Light Intensity on the Activation and Operation of the Hydroxyl Efflux System ofChara corallinaJournal of Experimental Botany, 1975
- Photosynthetic Fixation of14Carbon by Internodal Cells ofChara corallinaJournal of Experimental Botany, 1975
- Intracellular pH in Chara corallina measured by DMO distributionPlant Science Letters, 1975
- The role of protons in determining membrane electrical characteristics inChara corallinaThe Journal of Membrane Biology, 1974
- The effects of bicarbonate ions and external pH on the membrane potential and resistance ofNitella translucensThe Journal of Membrane Biology, 1970