Immunocytochemical Localization of 11 Beta‐Hydroxysteroid Dehydrogenase in Hippocampus and Other Brain Regions of the Rat

Abstract
The dehydrogenase form of 11 β-hydroxysteroid dehydrogenase (11-DH) which catalyzes the oxidation of the biologically active steroid, corticosterone, to its inactive metabolite, 11-dehydrocorticosterone, is found in rat brain. The distribution and localization of 11-DH-like labeling in the rat brain was examined by immunocytochemistry. 11-DH-like immunostaining was found in all subfields of the hippocampus and in many other parts of the brain, including the preoptic area (POA), central nucleus of the amygdala, bed nucleus of the stria terminalis (NIST) and the cerebral cortex. Percentages of 11-DH-positive cells ranged from 10% in the POA and NIST to 50% to 60% in the hippocampus. When combined with neuronal or glial markers, 11-DH-like immunostaining was found to be predominantly localized within neurons, ranging from 10% or less glial labeling in hippocampus, amgydala and cortex to 22% glial labeling in the POA and NIST. Immunostaining was present in both the cytoplasmic and nuclear components of some cells in addition to their projections. In the kidney, 11-DH has been postulated to be a key component in a mechanism by which aldosterone gains access to renal Type I receptors despite the presence of much higher concentrations of glucocorticoids. The present data is consistent with a similar mechanism occurring in at least some parts of the brain, although the hippocampus appears to be an important exception because it does not appear to be differentially responsive to aldosterone in spite of its high 11-DH activity and immunoreactivity. However, the hippocampus is not implicated in neural control of salt appetite and fluid balance, whereas some of the other brain regions like the POA, NIST and amygdala are believed to be involved. Other aspects of 11-DH localization must therefore be examined in future studies, including the co-presence of mineraiocorticoid receptors and 11-DH in the same or adjacent cells and the possible significance of the relatively high glial localization of 11-DH immunoreactivity in the POA and NIST.