Tropospheric phase calibration in millimeter interferometry
- 1 July 1999
- journal article
- Published by American Geophysical Union (AGU) in Radio Science
- Vol. 34 (4) , 817-840
- https://doi.org/10.1029/1999rs900048
Abstract
We review millimeter interferometric phase variations caused by variations in the precipitable water vapor content of the troposphere, and we discuss techniques proposed to correct for these variations. We present observations with the Very Large Array (VLA) at 22 and 43 GHz designed to test these techniques. We find that both the fast switching and paired array calibration techniques are effective at reducing tropospheric phase noise for radio interferometers. In both cases, the residual rms phase fluctuations after correction are independent of baseline length for b > beff. These techniques allow for diffraction‐limited imaging of faint sources on arbitrarily long baselines at millimeter wavelengths. We consider the technique of tropospheric phase correction using a measurement of the precipitable water vapor content of the troposphere via a radiometric measurement of the brightness temperature of the atmosphere. Required sensitivities range from 20 mK at 90 GHz to 1 K at 185 GHz for the millimeter array (MMA) and to 120 mK for the VLA at 22 GHz. The minimum gain stability requirement is 200 at 185 GHz at the MMA, assuming that the astronomical receivers are used for radiometry. This increases to 2000 for an uncooled system. The stability requirement is 450 for the cooled system at the VLA at 22 GHz. To perform absolute radiometric phase corrections also requires knowledge of the tropospheric parameters and models to an accuracy of a few percent. It may be possible to perform an “empirically calibrated” radiometric phase correction, in which the relationship between fluctuations in brightness temperature differences and fluctuations in interferometric phases is calibrated by observing a strong celestial calibrator at regular intervals. A number of questions remain concerning this technique, including the following: (1) Over what timescale and distance will this technique allow for radiometric phase corrections when switching between the source and the calibrator? (2) How often will calibration of the TrmsB – Ørms relationship be required?Keywords
All Related Versions
This publication has 25 references indexed in Scilit:
- Phase compensation experiments with the paired antennas method: 2. Millimeter‐wave fringe correction using centimeter‐wave referenceRadio Science, 1998
- Water vapor microwave continuum absorption: A comparison of measurements and modelsRadio Science, 1998
- Phase calibration and water vapor radiometry for millimeter-wave arraysAstronomy and Astrophysics Supplement Series, 1997
- The temporal power spectrum of atmospheric fluctuations due to water vaporAstronomy and Astrophysics Supplement Series, 1997
- Radiometric monitoring of atmospheric water vapor as it pertains to phase correction in millimeter interferometryAstronomy and Astrophysics Supplement Series, 1996
- Subarcsecond VLA Observations of HL Tauri: Imaging the Circumstellar DiskThe Astrophysical Journal, 1996
- Atmospheric Phase Noise and Aperture Synthesis Imaging at Millimeter WavelengthsPublications of the Astronomical Society of the Pacific, 1996
- Local feature enhancement of synthetic aperture radio images by adaptive Kalman filteringThe Astronomical Journal, 1990
- The effect of the dynamic wet troposphere on radio interferometric measurementsRadio Science, 1987
- Atmospheric Absorption Measurements with a Microwave RadiometerPhysical Review B, 1946