Failure Stress Criteria for Composite Resin
- 1 December 1987
- journal article
- research article
- Published by SAGE Publications in Journal of Dental Research
- Vol. 66 (12) , 1748-1752
- https://doi.org/10.1177/00220345870660121001
Abstract
In previous work (Peters and Poort, 1983), the stress distribution in axisymmetric models of restored teeth was analyzed by finite element analysis (FEA). To compare the tri-axial stress state at different sites, they calculated the Von Mises equivalent stress and used it as an indication for weak sites. However, the use of Von Mises' theory for material failure requires that the compressive and tensile strengths be equal, whereas for composite resin the compressive strength values are, on the average, eight times larger than the tensile strength values. The objective of this study was to investigate the applicability of a modified Von Mises and the Drücker-Prager criterion to describe mechanical failure of composite resin. In these criteria, the difference between compressive and tensile strength is accounted for. The stress criteria applied to an uni-axial tensile stress state are compared with those applied to a tri-axial tensile stress state. The uni-axial state is obtained in a Rectangular Bar (RB) specimen and the tri-axial state in a Single-edge Notched Bend (SENB) specimen with a chevron notch at midspan. Both types of specimens, made of light-cured composite, were fractured in a three-point bend test. The size of the specimens was limited to 16 mm x 2 mm x 2 mm (span, 12 mm). Load-deflection curves were recorded and used for linear elastic FEA. The results showed that the Drücker-Prager criterion is a more suitable criterion for describing failure of composite resins due to multi-axial stress states than are the Von Mises criterion and the modified Von Mises criterion.Keywords
This publication has 7 references indexed in Scilit:
- Biomechanical Stress Analysis of the Amalgam-Tooth InterfaceJournal of Dental Research, 1983
- A Non-destructive Method of Evaluating the Elastic Properties of Anterior Restorative MaterialsJournal of Dental Research, 1980
- Fracture Studies of AdhesionJournal of Dental Research, 1978
- Fracture Properties of Human Enamel and DentinJournal of Dental Research, 1976
- The work of fracture and its measurement in metals, ceramics and other materialsJournal of Materials Science, 1966
- Soil mechanics and plastic analysis or limit designQuarterly of Applied Mathematics, 1952