Pharmacogenetics: data, concepts and tools to improve drug discovery and drug treatment
Open Access
- 26 January 2008
- journal article
- review article
- Published by Springer Nature in European Journal of Clinical Pharmacology
- Vol. 64 (2) , 133-157
- https://doi.org/10.1007/s00228-007-0424-z
Abstract
Variation in the human genome is a most important cause of variable response to drugs and other xenobiotics. Susceptibility to almost all diseases is determined to some extent by genetic variation. Driven by the advances in molecular biology, pharmacogenetics has evolved within the past 40 years from a niche discipline to a major driving force of clinical pharmacology, and it is currently one of the most actively pursued disciplines in applied biomedical research in general. Nowadays we can assess more than 1,000,000 polymorphisms or the expression of more than 25,000 genes in each participant of a clinical study – at affordable costs. This has not yet significantly changed common therapeutic practices, but a number of physicians are starting to consider polymorphisms, such as those in CYP2C9, CYP2C19, CYP2D6, TPMT and VKORC1, in daily medical practice. More obviously, pharmacogenetics has changed the practices and requirements in preclinical and clinical drug research; large clinical trials without a pharmacogenomic add-on appear to have become the minority. This review is about how the discipline of pharmacogenetics has evolved from the analysis of single proteins to current approaches involving the broad analyses of the entire genome and of all mRNA species or all metabolites and other approaches aimed at trying to understand the entire biological system. Pharmacogenetics and genomics are becoming substantially integrated fields of the profession of clinical pharmacology, and education in the relevant methods, knowledge and concepts form an indispensable part of the clinical pharmacology curriculum and the professional life of pharmacologists from early drug discovery to pharmacovigilance.Keywords
This publication has 165 references indexed in Scilit:
- A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21Nature Genetics, 2007
- A new multipoint method for genome-wide association studies by imputation of genotypesNature Genetics, 2007
- Replicating genotype–phenotype associationsNature, 2007
- Global variation in copy number in the human genomeNature, 2006
- Genome assembly comparison identifies structural variants in the human genomeNature Genetics, 2006
- DNA methylation profiling of human chromosomes 6, 20 and 22Nature Genetics, 2006
- A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressantsClinical Pharmacology & Therapeutics, 2006
- A high-resolution survey of deletion polymorphism in the human genomeNature Genetics, 2005
- A haplotype map of the human genomeNature, 2005
- Mutation in blood coagulation factor V associated with resistance to activated protein CNature, 1994