The first absorption band for H2O: Interpretation of the absorption spectrum using time dependent pictures

Abstract
We examine the relation between photodissociation dynamics and the form of the total absorption spectrum for H2O in the first absorption band. Application of an exact time dependent formalism gives a direct and intuitive relation between molecular motion and spectral features. We show that the series of weak structures on top of the broad continuum is due to symmetric stretch motion in the excited state. The spacing between the structures is, essentially, given by the frequency associated with this motion. In addition, we present some excited state eigenfunctions, which provide a direct connection between the structured spectrum, the final product distributions, and the dynamics.