Kinetics of coupled enzyme reactions

Abstract
A theory has been developed for the kinetics of coupled enzyme reactions. This theory does not assume that the first reaction is irreversible. The validity of this theory is confirmed by a model system consisting of enoyl-CoA hydratase (EC 4.2.1.17) and 3-hydroxyacl-CoA dehydrogenase (EC 1.1.1.35) with 2,4-decadienoyl coenzyme A (CoA) as a substrate. This theory, in contrast to the conventional theory, proves to be indispensible for dealing with coupled enzyme systems where the equilibrium constant of the first reaction is small and/or the concentration of the coupling enzyme is higher than that of the intermediate. Equations derived on the basis of this theory can be used to calculate steady-state velocites of coupled enzyme reactions and to predict the time course of coupled enzyme reactions during the pre steady state.