Numerical analysis of black hole evaporation

Abstract
Black hole formation and/or evaporation in two-dimensional dilaton gravity can be described, in the limit where the number N of matter fields becomes large, by a set of second-order partial differential equations. In this paper we solve these equations numerically. It is shown that, contrary to some previous suggestions, black holes evaporate completely a finite time after formation. A boundary condition is required to evolve the system beyond the naked singularity at the evaporation end point. It is argued that this may be naturally chosen so as to restore the system to the vacuum. The analysis also applies to the low-energy scattering of S-wave fermions by four-dimensional extremal, magnetic, dilatonic black holes.
All Related Versions

This publication has 15 references indexed in Scilit: