Cyclo- and Cyclized Diene Polymers. XIX. Polymerization of Butadiene with the C2H5AlCl2+ TiCl4Catalyst

Abstract
The polymerization of butadiene with an EtAlCl2-TiCl4 catalyst system yields cyclopolybutadiene with varying amounts of trans-1, 4 units, depending upon the Al/Ti ratio and the solvent. Apparently different active centers are produced at Ti > Al and Al > Ti ratios. When the catalyst system has Ti > Al, there is a rapid decrease in the initial polymerization rate and the cyclopoly butadiene contains large amounts of methyl groups, 10–12% of trans-1, 4 units, 2–3% of 1, 2 units, and, when the polymerization is carried out in aromatic solvents, aromatic moieties are incorporated in the structure. When the catalyst system has Al > Ti, there is a very slow decrease of the initial polymerization rate, and the cyclopoly butadiene contains up to 40% of trans-1, 4 units, less than 1% of 1, 2 units, and methyl groups and solvent moieties are essentially absent even when the polymerization is carried out in aromatic solvents. Cocatalytic amounts of iodine greatly increase the initial rate of polymerization. The Ti > Al catalyst may promote 1, 3-cation-radical propagation with transoid monomer to yield a perhydrophenanthrene structure while the Al > Ti catalyst may promote 1,2 cation-radical propagation with cisoid monomer to yield a perhydroanthracene structure.