Enhanced Ordering of Interacting Filaments by Molecular Motors

Abstract
We theoretically study the cooperative behavior of cytoskeletal filaments in motility assays in which immobilized motor proteins bind the filaments to substrate surfaces and actively pull them along these surfaces. Because of the mutual exclusion of the filaments, the coupled dynamics of filaments, motor heads, and motor tails leads to a nonequilibrium phase transition which generalizes the isotropic-nematic phase transition of the corresponding equilibrium system, the hard-rod fluid. Langevin dynamics simulations show that the motor activity enhances the tendency for nematic ordering. We develop a quantitative theory for the location of the phase boundary as a function of motor density. At high detachment forces of motors, we also observe filament clusters arising from blocking effects.