Sonic black holes in dilute Bose-Einstein condensates

Abstract
The sonic analogue of a gravitational black hole in dilute-gas Bose-Einstein condensates is investigated. It is shown that there exist both dynamically stable and unstable configurations which, in the hydrodynamic limit, exhibit a behavior completely analogous to that of gravitational black holes. The dynamical instabilities involve creation of quasiparticle pairs in positive and negative energy states. We illustrate these features in two qualitatively different one-dimensional models, namely, a long, thin condensate with an outcoupler laser beam providing an `atom sink', and a tight ring-shaped condensate. We have also simulated the creation of a stable sonic black hole by solving the Gross-Pitaevskii equation numerically for a condensate subject to a trapping potential which is adiabatically deformed. A sonic black hole could in this way be created experimentally with state-of-the-art or planned technology.

This publication has 0 references indexed in Scilit: